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Abstract

In the interaction of an acousticfield with a moving airframe weencountera canonical

initial value problemfor an acousticfield inducedby an unsteadysourcedistribution, q(t, x)

with q - 0 for t < 0, in a medium moving with a uniform unsteady velocity U(t)_ in the

coordinate system x fixed on the airframe. Signals issued from a source point S in the

domain of dependence 7:) of an observation point P at time t will arrive at point P more

than once corresponding to different retarded times, T in the interval [0, t]. The number of

arrivals is called the multiplicity of the point S. The multiplicity equals 1 if the velocity U

remains subsonic and can be greater when U becomes supersonic. For an unsteady uniform

flow U(t)_, rules are formulated for defining the smallest number of I subdomains V/of T)

with the union of Vi equal to T). Each subdomain has multiplicity 1 and a formula for the

corresponding retarded time. The number of subdomains Vi with nonempty intersection is

the multiplicity m of the intersection. The multiplicity is at most I. Examples demonstrating

these rules are presented for media at accelerating and/or decelerating supersonic speed.
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1. Introduction

In this paper we study the propagation of acoustic waves induced by a spatial source

distribution q(t, x) in a uniform medium moving with a time dependent velocity U(tfi

relative to the coordinate system x = (x, y, z). This study is an outgrowth of recent exper-

imental and theoretical investigations of a model acoustic-panel interaction problem. See

for example [1] and [2]. The acoustic source distribution could simulate the noise from jet

exhausts, turbulent boundary layers and/or the airframe panel oscillation. For the analysis

of the panel oscillation it is convenient to work in the coordinate system x = (x, Y, z), sta-

tionary with the airframe, while the flow field is moving with the uniform unsteady velocity

U(tfi. In this system, the acoustic potential O(t, x, y, z) is governed by the convective wave

equation with variable coefficients, the velocity U(t) and the acceleration U(t),

[OF, + Uax + 2Va_x + U2a_x - C2A]C(t,x,y,z) = q(t,x,y,z) , (1.1)

where A denotes the Laplacian in (x, y, z) and C stands for the speed of sound of the

medium at the ambient condition. For an initial value problem, we impose

¢=0, 0t(I'=0, at t=O, (1.2)

or

q=O=¢t=0, for t_<0. (1.3)

In general, the solution (I,(t, x) is constructed indirectly via the solution of the correspond-

ing acoustic field (I, in the coordinate system _ with the medium at rest [3]. These two

coordinate systems, which coincide at t = 0, are related by translation, x = =_ + _X(t),

i. e.,

/0'_ = x- X(t) , fl = y , _. = z , with X(t) = U(t') dt' . (1.4)

From hereon we omit the bars over y and z for the coordinates of x. Figure 1 shows the

coordinate _ with the medium at rest moving with velocity U(t)i relative to the coordinate

x. We use f and f to denote the same quantity as functions of t-, _, y, z and t, x, y, z

respectively with t-= t. Thus we have

f([,_2, y,z) = f(t,x,y,z) with O_f= (Or + UOx)f and Vf = Vf, (1.5)

where V and V denote the gradient operators in _ and x. In particular, if f denotes the

unsteady source distribution q in the coordinate system, x, the corresponding distribution

in R is given by (1.5). In the barred system, the acoustic potential _ is governed by the

simple wave equation,

(1.6)

where £ denotes the Laplacian in (_2,y,z). With homogeneous initial conditions (1.2)

applied to the barred variables, the potential at point/5(:_) at instant t, is given by the

explicit formula [3],

1///vd_drld _ q(T,_',y',z') (1.7)- '

where _, y, ¢ denote the coordinates of a source point S(:_') relative to point P(:_),



• '=_+_, y'=y+rl, z'=z+(,

R denotes the distance from S to P and r the retarded time,

R -- If¢'- $¢1 - _/_2 + a2 and r - t - R/C where

(1.8)

a = v/r/2 + (2. (1.9)

We now identify the domain of integration P" as the domain of dependence _ of point/5

at time t. In the coordinate system, _, U, (, the point/5 is the origin of the system and the

domain of dependence _ is a spherical bail of radius Ct centered at the origin,/5, i. e.,

I0 < R < Ct}. (1.1o)

It is covered by a family of concentric spheres of radii R E [0, Ct]. The signal from a point

in 2 on a sphere of radius R arrives at the origin/5 along the radial line SP at time

t when the signal was initiated at the retarded time r = t - R/C. Since the domain of

dependence is axi-symmetric with respect to the _ axis, we show in Fig. 2 the cross section

of the domain 2, its boundary B and the family of concentric spheres in a meridian plane,

the _r plane. We define the multiplicity of a point by the number of retarded times the

signal from the point reaches point /5 at time t. Thus the multiplicity of a point in b

or the multiplicity of 2, in the barred coordinate system with the medium at rest, is one

and hence the domain of integration _z for the integral on the right hand side of (1.7) is

equal to the domain of dependence _. Note that the above description of the domain of

dependence (1.10) in the barred coordinate system is independent of the velocity of the

medium relative to the coordinate system x.

To identify the source distribution _ at point S(_', y', z') at a retarded time r with

the distribution q at the corresponding point S(x', y', z') in the moving frame, we relate

the coordinate _' to x' by (1.4) at time r, i. e.,

x'= + and • (1.11)

By using (1.4) and (1.5), the left hand side of (1.7) is identified as ¢(t,x,y,z) and (1.7)

becomes an implicit formula for • at point P(x, y, z). Since the dependency on the velocity

U(t)_ of the medium appears only via the transformation (1.1 1) for the source distribution,

the solution (1.7) of the initial value problem, (1.6) and (1.2), is valid for all Mach numbers

including the transonic range.

To express the potential ¢ as an integral in the coordinate system x, we change the

integration variables _, 77,( in (1.7) to (, r/, ( which are the coordinates of point S relative

to P. Using (1.4), (1.8) and (1.11), we have _ as function of _ and a or _ and 7,

jfr t= x'- x = _ + X(r) - X(t) = _- U(t')dt' , (1.12)

where 7 = t - R/C, R = x/_ 2 + a 2 and c. = V_ + (2.

The Jacobian determinant of the coordinate transformation is

j= 0(_,r],() _ 0_ R- M_ 1 - Mcos¢. (1.13)
- = R -
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Here R, 8, ¢ with 0 < ¢ < 7r represent the spherical coordinates while _, a, 8 the cylindrical

coordinates with r] = a cos 8 and _ = a sinS. Note that in the transformation (1.12), r/ and

and hence _r and 8 remain the same. The cylindrical coordinates in the _, 77,_ space are

_, a and O.

The spheres S of constant _- in a subsonic interval, where M(r) < 1, cover a subsonic

region in 9. The spheres in a supersonic interval, where M(r) > 1, cover a supersonic

region. In a subsonic region, the Jacobian remains positive. In a supersonic region, there

is a critical surface, J, on which the radial velocity component is sonic,

J=l-M(r)cos¢=0 or a=_v/M2-1>0. (1.14)

The transformation (1.12) maps the domain of dependence # of the origin P of the

_, r/, _ space to the domain of dependence 79 of the origin P of the _, rl, ¢ space. The critical

surface j in a supersonic region is then mapped to surface J. Since the Jacobian J changes

sign across J, the neighborhoods on the two sides of j are mapped to the same side of J'.

Thus the inverse transformation of (1.12) is not single valued and hence the multiplicity

of a point in 79 can be greater than 1. For a given point (_, a) and time t, (1.12) becomes

an implicit equation for _ because the lower limit of the integral r = t - R/C and R are

related to _ by (1.9). Using (1.9) and (1.12), we get an implicit equation for R(r,(,a),

t
R 2 = [_ + U(t')dt')] 2 + a 2 . (1.15)

The root(s) of (1.15) in [0, Ct] depend on the unsteady velocity U(t').

Using (1.11) to (1.13), we convert (1.7) to a volume integral in the 4, rh _ space,

1 if£ d_d_d(q(r,x+_,y+N,z+¢) (1.16a)_(t,x,y,z) - 4rr IR- M$I

q(ri,x + {,y + rhZ + _)

l-n - I
(1.16b)

To evaluate the integral over the domain of dependence 7:) in (1.16a) we need to relate R

and _ to 4, a and t, that is, to find all the roots, Ri of (1.15) in [0, Ct] or the retarded time

ri in [0, t] and identify the domain _ in the _, q, _ space for each Ri. Then • is written as

the sum of integrals over the smallest number f of domains 17/in (1.16b). It is the purpose

of this paper to formulate the rules identifying these domains _ for a medium moving at

an unsteady speed, U(t). First, we review briefly the solutions given in [2] and [3] for the

following three special cases; 1) moving at an unsteady subsonic speed, 2) moving at a

constant supersonic speed, and 3) moving with constant acceleration.

1.1, Unsteady Subsonic Speed For this case, we have M(r) < 1, _- e [0, t], the forward

and backward speeds of propagation C 4- U are positive and hence the family of concentric

spheres covering 1) is mapped to a family of nested spheres covering the spherical ball 79

bounded by So. Hence I = 1 and the domain of dependence 79 has multiplicity 1. This
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result reducesto the well known result for a steady subsonicflow, at a constant M < 1,

for which (1.15) has a unique and explicit solution for _, 7/, ( in T_ and the denominator in

(1.16) becomes the pseudo-distance [3],

a- = R* = + (1 - (1.17)

The result that the domain of integration in (1.16) is equal to :D remains valid even

when there is a sonic interval, where M(r) = 1 for 0 _< tl _< r < t_ <_ t, during which, the

nested spheres will be in contact at one point on the (-axis with ( = C(t-r)-X(t)+X(r) =

C(t - tl) - X(t) + X(tl). Although the multiplicity at the point of contact is infinite, the

integral in (1.16) remains finite because the acoustic field is initiated at t = 0.

1.2, Constant Supersonic Speed For the case of a medium moving at constant super-

sonic speed, M > 1, the solution is well known [3]. The domain of dependence :D of point

P lies in the backward Mach cone from P. The cone is

=-v/(M 2 - 1)a 2 (1.18)

To evaluate the integral we need to relate R and _ to _, a and t, The domain T_ is covered

by a one parameter family of spheres of radius R = C(t - v) centered on the _-axis at

= -MR for r E [0, t]. The Mach cone is the envelope of these spheres. The circle of

tangency of a sphere with the cone divides the sphere into a large and a small surface,

convex and concave away from the cone respectively. Fig. 3 shows the cross section of

the Mach cone and the spheres in the meridian plane, the _cr plane. As an initial value

problem, we have r _ 0 or R < Ct, thus the domain of dependence T_ is bounded by the

backward Mach cone (1.18) and the convex part of the spherical surface So with radius

Ct centered at _ = -Ut and azimuthal angle ¢ E [_r/2 - a, _'], where a is the Mach angle.

Note that the mirror image of the domain of dependence D with respect to the plane _ = 0

is the domain of influence of a source S at the origin for the duration [0, t] described in [3].

With a constant M > 1, (1.15) reduces to a quadratic equation for R and the two roots

are [3],
R + = -[M_ + R*]/(M 2 - 1), (1.19)

where R* = V/_ 2 - (M s - 1)a :. The denominator of the integrand in (1.16) becomes R*

and the integral can be written as the sum of two integrals over the domains V- and V +.

Equation (1.16) becomes,

___ + ] q(r,x+_,y+_?,z+
O(t,x,y,z)= 47r + - R* , (1.20)

with 7- = t - R + in V + and I - 2. The domain of integration V + is bounded by the Mach

cone and convex part of the sphere So and is equal to :D. The domain of integration V-

is bounded by the concave part of the sphere So with ¢ E [0, a]. Note that the superscript

of V gives the sign of J in V +. Since V- E V + -- T_, the multiplicity of :D N V- is two

while the multiplicity of the complement, the spherical ball inside So, is one. The meaning

of R + and the propagation of signals from point S at r + to P at time t are described in

Appendix A.
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Without making useof the explicit solution (1.19) of (1.15), the results in [3] quoted
abovewereobtained by a differentmethod in [2]. It beginswith the partition of the domain
of dependence73,the sphericalball (1.10), into twononoverlappingsubdomains,IV+,by the
critical surface ,7, (1.14), which is the circular cone,¢ = arccos(1/M) = 7r/2- a. Shown

in Fig. 4 is the partition of 73 in a meridian _a plane by the critical curve ,7, the radial

line PT, into two subdomains rd- and V+, with 0 < ¢ < 7r/2 - a and r/2 - a < ¢ < rr

respectively. The image of j in the _a plane in Fig. 3 is the backward Mach line PT and the

images of _'+ are the domains of integration V + described in the preceding paragraph.. The

procedure for the identification of the domains of integration in the _, 77, ( space, introduced

in [2], demonstrates the important role played by the critical surface, which does not exist

in an unsteady subsonic region. Since this procedure does not need the explicit solution

of (1.15) or (1.12), it is suitable for generalization to an unsteady speed U(T) with several

supersonic intervals. As an illustration or rather a clue to the generalization, we mention

the special case of constant accelerating motion considered in [2].

1.3 Constant Accelerating Motion The interaction of an acoustic field with a baffled

panel in the horizontal xz plane was studied in [2], for the panel moving with constant

acceleration to a supersonic speed, i. e., U = CT. With M = r for 7- E [0, t] and t > 1,

there is a supersonic interval 1 < r < t. This special case shows that in addition to the

partition of 73 by the critical surface ,F in a supersonic region, further partitions may be

needed, related to the geometrical properties of j and its image ,7". See Figs. 4 and

5. This case is discussed in §4 as one of the examples for the application of the rules of

partition formulated in §3.

In the next section, we study the geometry of the critical surface j and the corre-

sponding singular points on the image ,:7. We then use these studies to formulate in §3 the

rules for the partition of the domain of dependence, 73, into nonoverlapping subdomains

_.'s for an unsteady velocity, U(T), 7- E [0, t]. and show that the partition has the required

property that the transformation (1.12) from a Vj to its image _ in the _, 77,( space is one

to one. In particular, the value of R or _- defined by (1.15) for a point in _ is uniquely

defined. Thus the domain of integration 79 in (1.16) is the sum of those images Vj's. Since

those images may overlap each other in the _, r/, ( space, signals from a point S in the space

lying in m of those images will reach point P m-times. Hence m is the multiplicity of point

S. The rules for counting the multiplicity of a point in D are also stated in §3. The anal-

yses in §2 and 3 justify the assertions made in [2] for the case of a constantly accelerating

speed. Additional examples with unsteady velocities, accelerating and/or decelerating at

different ranges of Mach numbers are presented in §4 to demonstrate the application of

the rules of partition of _ and to show the singularities of ,7 in the 4, 7#,( space.

2. The Geometry of the Critical Surface and its Image

In §1, the domain of dependence 75 of point t5 at time t and the critical surface J in

the coordinate system (_, 77,() with the medium at rest are defined by (1.10) and (1.14).

The transformation from the system (_,r#, _) to (_,r/,() defined by (1.12) at time T is a

pure translation of (X(7-) - X(t)) along the _ axis. We reemphasize the following points_

t Numbers in curly brackets refer to statement numbers in §2.
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{ 1} The domain 7) is a sphericalball of radius Ct centered at point/5 and for each point

on a concentric sphere of radius R E [0, Ct], the retarded time is t - R/C. Thus 7)

has multiplicity one, independent of the source distribution and the velocity U(r)_ of
the medium.

{2} The critical surface o4, on which the Jacobian determinant d vanishes, appears in 7)

only in a supersonic region. The surface is axisymmetric with respect to the _-axis,

is independent of the source distribution but depends on the velocity U(r) of the

medium. See for example Pigs. 2 and 4

{3} The transformation (1.12) relates the axial variable _ to _ while the other two variables

r/ and ¢ or a and 0 remain unchanged. The transformation is also independent of the

source distribution but depends on U(r). Thus the images of the spherical ball 7),

the concentric spheres of constant r and the critical surface ,] in the _, U, ¢ space are

axisymmetric with respect to the (-axis.

{4} A spherical cap of radius R centered at the origin of the _, rl, _ space is mapped to

the same spherical cap centered at _(X(r) - X(t)) in the (, rl, ( space with the same

retarded time r = t - R/C. See for example Figs. 3 and 5.

Because of the axisymmetry, it suffices to study the geometry of the surfaces O4 and its

image J in a meridian plane, the _a plane, and the corresponding _a plane. We retain the

same symbols Z), ,.7",113.for their cross sections in a meridian plane and the same unbarred

symbols for the images. The geometrical properties of the critical curve O4 and its image

J will be described in § 2.1 and § 2.2 respectively and be employed in §3 to formulate

the rules for the partition of 7) into nonoverlapping subdomains _, j = 1, 2,.-- such that

the mapping of a _. to its image I_ is one to one.

2.1. The critical curve O4 in a meridian planes the _a plane

In the meridian plane, the two spherical coordinates R and ¢ become the polar coordi-

nates, and the domain of dependence 7) in the plane is a semicircular disc with 0 <_ R < Ct

and 0 < ¢ < 7r. Let us consider the signals initiated in a supersonic interval, i. e.,

M(r) > 1, r E[t.,t*],andM=l att. ift, > 0 and at t* if t* <t. The signals come

from points in the supersonic ring C(t - t*) <_ R < C(t - t.) in 7). The critical curve

in the polar coordinates is defined by,

cos¢ = 1/M(T) and R = C(t - r) , (2.1)

and in the rectangular coordinates (_, a) by

_= Rcos¢ = C(t- r)/M and a = Rsin¢ = C(t- r)[1- M-2] 1/2 , (2.2)

with r E [t.,t*]. See for example Fig. 4, where t. = 1 and t* = t. Since the Mach angle

a(r) = _-/2- ¢ we have from (2.1),

{5} The radial line to point Q(R, ¢) on O4 is orthogonal to the Mach line at Q. The

polar angle ¢ of _) reaches a local maximum (minimum) when M or U reaches a local

maximum (minimum).



The rates of changeof a and _ are

,(7.) _RM' - CM(M 2 - 1) , _'(T) =
M 2 v/M 2 - 1

and the slope of j is

da [RM' - CM(M 2 - 1)]

d_ -(CM + RM')v/M 2 - 1

-CM - RM'

M 2
(2.3a)

(2.3b)

From hereon we use the prime to denote the 7.-derivative. From (2.3), we see that a'(7.) < 0

when M' < 0, therefore, a' and the slope vanish only when M' > 0 while ('(7.) < 0. Thus

{6} The ordinate o" of j attains an extremum only in an accelerating subregion, while

decreases.

Since cr remains unchanged in the transformation from the _a plane to _a plane, the

mapping of a neighborhood of the curve j to its image is defined by the mapping of a

horizontal line segment at constant a. A small segment which crosses over J at a point

with nonzero slope, or a' # 0, will cross over J only once.

' = 0 at we haveNow consider an extremum point, say/_-'e, i. e., a e 7._,

,, R_M_' 2,
;'_ = -CMe and a e = - 3CM_M'¢ (2.4a)

2 2

" exists with Me > 1. This is aWe have assumed that U"(7.) or M" exists, therefore, a e

realistic assumption and will simplify our discussion that follows but is not essential.

When the extremum point is neither a maximum nor a minimum, 0" does not change

" 0. A horizontal segment close to point/(e will intersectsign as 7. crosses 7.e and a e =

only once.

When a" _ 0 at a critical point say/_'1, it is either a local maximum or minimum

point. The curve j near/Ya behaves as a parabola with (cr - aa)a_' > 0. For a given a,

there are two roots,

( - & = -I-C Ml [2( a _[ al ) ]1/2 + O( a - al ) . (2.4b)

Thus a horizontal segment near point/_.'_ crosses over ,_ twice if it is below (above) /_'1

where a is a local maximum (minimum). This point will be elaborated in {lla} and

{llb}. We need to locate the local maximum and minimum points on ,]. Let the n-th

point and the corresponding time be denoted by/-_f,, and 7-n with 7.,_ in decreasing order,

i. e., 7.n > 7.,+1, for n = 1,2...,N. The corresponding radii R, = C(t - Tn) are in

increasing order. These N points divide j into N + 1 segments. The segment from point

[(n-1 to/-(n, is denoted by J, with TO = 7.* and 7.N+l _- 7.*"

If the supersonic interval ends at t* = t, we have R(t*) = 0. If t* < t, the interval

ends with M(t*) = 1 due to the continuity of M(7.). For either case, we see from (2.1),

(2.2) and (2.3), that

7



{7a} For the supersonic region, the critical curve ff ends at v = t* on the _ axis with

a'(t*) < 0. If j has one or more extremum points, N > 1, the first one [(1 has to be

a local maximum. Therefore,/_'n is a local maximum if n is odd and is a minimum if

even.

{Tb}If the supersonic interval begins at t. > 0, we have M(t.) = 1 and a'(t) --_ +oo as

t --* t. + 0. Hence ffN is a local maximum and N is odd. If N is even, it is necessary

that t. = 0.

If the supersonic interval begins at t, = 0, we have M(0) >_ I and the sign of a'(0 +) depends

on the initial acceleration or M'(0 +). For example, in the case of constant supersonic speed,

M'(T) = 0 and hence a' < 0 as shown in Figs. 2. On the other hand, the sign can be

positive, if the interval begins with an acceleration at a low supersonic speed. See for

example Fig. 4.

Because of {7}, the number N of extrema of J will be even or odd depending on

whether a'(t.) is negative or not. Thus

{Sa) If the ordinate of the critical curve J decreases at the beginning of a supersonic

interval, i. e., al(t, + 0) < 0, N has to be even. The curve has either no extremum or

pairs of maxima and minima, with the last one being a local minimum aN at /_'N.

{8b} If the ordinate of the critical curve J is not decreasing at the beginning of a supersonic

interval, i. e., a'(t. +0) > 0, N has to be odd. This is the case when t. > 0. The curve

j has at least one local maximum cr at point/_'1 and time rl. If there are additional

ones then they come in pairs of minima and maxima. The last one is a local maximum

at _'N.

Note that {7b) is included in {Sb}. Since ] has an extremum a only when M' > 0, {8a}

and {8b} are applicable to an accelerating supersonic interval.

From (2.4a) for or" at an extremum point and {6} that M' > 0, it is clear that a_' < 0

when M" < 0 and the extremum point can not be a local minimum. Therefore

{8c} In a supersonic region with constant or decreasing acceleration, there can be at most
one local maximum and no local minimum.

Note that for the case of a constant supersonic speed [3] reviewed briefly in §1.2,

the critical curve L? which is a radial line does not have a local extremum a. This result

is in agreement with {8a} since a'(r) = -1/M ,r e [0, t]. For the case of constantly

accelerating speed from subsonic to supersonic [2], reviewed briefly in §1.3, we can use

{8b} and {8c} to conclude that the critical curve ,_ has only one maximum point and no

minimum as shown in Fig. 4.

Figure 6 gives another demonstration of {Sa}. It is the case of accelerating at a

constant rate from a low supersonic speed, with M(r) = 1.15 + r 2 for 0 < r < t = 2.25.

The critical curve j begins at point _' on the semicircle B with M(0) = 1.15 and a(0) =

Ctv/1 - M -2 = 0.494Ct. As r increases, the ordinate a of j decreases to a minimum at

point K2 with T2 = 0.0918, increases to a maximum at point /(1 with rl 0.609, and then

decreases reaching the origin P at v = 2.25 with M = 6.2125. Points/_1 and t7(2 divide

j into three segments Jn, n = 1, 2, 3. Similar to Figs. 2 and 4, curve ,7 partitions the



domain of dependenceD into #+ and D-. Also shown are the partition of #+ under the

rules to be described in §3.

2.2 The critical curve ff in the _a plane

Now we study the properties of the image ff in a meridian plane, the _cr plane with

cr > 0. With ( related to _ by (1.12), (2.2) and (2.3) become the equations for the image

ff in the _cr plane,

t= C(t - T)/M - C M(r')dr', a = C(t - T)v/M 2 -- 1/M (2.5)

and

do

d_ CM + RM' da V/--_2 _ 1 hence -- = -tana , (2.6)
d---T= M2 + C M - dr d_

Thus the tangent line to the curve 3" is a backward Mach line,

a- Rcosa = -tana{_-[X(r)- X(t) + Rsinc_]} . (2.7)

Note that the image of a semicircle R = C(t - r) in the _a plane is a semicircle of the

same radius in the _cr plane centered at (-Z(t) + X(,), 0),

[_ + X(t) - X(T)] 2 + a 2 = C2(t - T) 2 • (2.8)

From (2.7) and (2.8), we see that

{9} The curve J in the _cr plane is the envelope of the family of Mach lines (2.7) and also

of the family of circles (2.8) with parameter T 6 (t,, t*).

Figure 3 shows the images of curves in the _a plane shown in Fig. 2. At a constant

supersonic speed, the curve ,7 becomes the backward Mach line TP enveloping the family

of circles (2.8). Figure 5 shows the images of curves in Fig. 4 for a constant accelerating

motion. The curve J begins at point T at v = 1 and M = 1 with a vertical tangent

corresponding to the back facing Mach angle zr - a = zr/2. The curve approaches the

origin P as r --- t along a radial line which is the backward Mach line. Tangent lines to

J or the local backward Mach lines are shown in the insert. Figure 7 shows the images

of curves in Fig. 6 for a constant rate acceleration from a low supersonic Mach number.

The semicircle B with radius Ct and centered at (-X(t), 0) is the image of the circular

boundary/3 of/3 when r = 0. The critical curve J is divided by the point Ki of local

maximum and the point K2 of local minimum into three branches. See ab,, the insert.

The first branch ,71 starts at the origin P along the radial line or the the t,ackward Mach

line at r = t. The third branch J3 ends at point T on the semicircle g_ with a common

tangent; the backward Mach line at v = 0 with M = 1.15.

Using (2.6), we obtain the curvature of J,

_ Me M'(r) (2.9)
M 2 a'(r)M 2 x/M 2 - 1



{10a}

{10b}

{10c}

{11 }

{llb}

The sign of _ depends on the sign of M'/o". From {6}, we know that at an extremum

point on J, a' = 0, M' > 0 and (2.9) says that the radius of curvature 1/_; at the image

point on J vanishes. If the extremum point on J is either a local maximum or minimum,

say point -_'n at 7n, then a' and 1/_ change sign along J as r passes r,. The point K,,

which is the image of a local maximum or minimum point/_', on ._, is a cusp on .:7 formed

by two adjacent branches Jn and Jn+l.

Now we study the curve ,7 or rather the two adjacent branches in the neighborhood

of the cusp K,. From (2.3) and (2.9), we see that on these two branches, a', _' and 1/_

are of opposite sign and they vanish at Kn. With M' > 0, the slope of J is increasing

continuously as r increases across rn from branch ,Y, to J,+l- We describe the curve J

in the neighborhood of a cusp Kn,

The image of a local maximum (minimum) point/(, on ,7 is also a local maximum

(minimum) point on ,_. The segments ,], and ,],+1 on the left and right of point/(n

are mapped onto the right and left branches Jn and ,7n+1 of the cusp Kn.

As r increases across r,, the slope of the tangent line or the backward Mach line (2.6)

increases along branch Jn+l to the cusp Kn and then continues along branch ,]_. If a

attains a local maximum (minimum) at cusp K,, _ reaches its minimum (maximum).

The branch Jn+l is concave downward (upward) and lies below (above) .]', when

the cusp Kn is a local maximum (minimum) point. The two branches of opposite

concavity form a simple cusp of the first species.

From (2.3a) and (2.9), we know that if M' = 0, then a' < 0 and _ - 0. and that the

curvature of a branch can change sign if M' changes sign. Also we see that M' has to be

positive, when a' > O. Therefore,

A point on J, where the Mach number is a local maximum or minimum, is a point of

inflection of J. The curvature of ,7 changes sign whenever the velocity changes from

decelerating to accelerating or vice versa.

A branch joining a point of local minimum a to a local maximum, as T increases, has

to be in an accelerating subregion and has to be concave downward. A decelerating

interval, M' < 0, can occur only on a branch joining a local maximum to minimum

and this branch is concave upward during an accelerating interval but downward in a

decelerating interval.

To see the additional partitions needed for the subdomains V'±, so that the mapping

(1.12) of each subdomain on to its image is one to one, we study the mapping of a horizontal

segment SrSt of constant ac in the _cr plane to its image S,.St in the _cr plane. If the segment

S,-St lies either in V'+ or in _'-, i. e., the segment does not intersect the critical curve ._, the

Jacobian J = d_/d_, (1.13), does not change sign and the mapping is one to one. We need

to study only those segments crossing J, on which J = 0 or cos ¢ = v/M 2 - 1/M >_ O.

Therefore, we consider the segments with _ > 0 that cut two adjacent branches of the

critical curve J, the left branch J, and the right branch Jn+l, at Sn and S,+1 as shown

in Fig. 8. In Fig. 8a (Sb), the point /_'n is a local maximum (minimum) and ac is less

(greater) than or,. The segment S,-SI is divided into three segments S_5'n+l, Sn+l_q, and

S, St. They are oriented as indicated by the arrow in the direction opposite to the _ axis as

v increases, because _' = -CR/_ < O. Since +d_/d_ > 0 in _'±, the image of the segment
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of SrSl in 17+ is oriented in the direction of T_ axis as shown in Fig. 8. Note that the two

image branches fin and `7n+1 form a cusp at Kn with branch `Tn lying to the right (left)

of `Tn+l. in Fig. 8a (Sb). The first and third segments S,-Sn+I and SnSt lie above (below)

ff therefore, their images S,-Sn+a and SnSt are oriented in the same (opposite) direction

from right to left (from left to right). The second segment Sn+IS,* lies below (above) if,

therefore its image Sn+lSn is oriented in the opposite (same) direction from right to left

(from left to right). Because of the change of direction of the image segments across each

branch, the second segment Sn+lSn and the two branches `7n and `7,*+1 lie on the same

sheet while the first and third segments lie on two different sheets. Therefore, the first

segment SrSn+l will be continued across the branch ,7,, without a reversal of direction and

the third one SnSt across ,7,*+a.

Consider the inverse transformation of (1.12) of a point in the _a plane without

considering the three separate sheets. A point q in the middle segment Sn+IS,* has at

least three image points qr, q and c]t which lie in the segments S,-Sn+I, S,*+aS,, and SnSt

respectively. As point q approaches an end point say Sn, the two image points _t and

approach each other and coincide at Sn as a double root. The third image point _Tr

approaches a point c7" to the right of S,+1. When q crosses over to the right of Sn, there

is only one image point qt which moves to the right of the point q*. We say that

{12a)

{12b}

A horizontal segment S,-St intersecting j twice at points S,* and Sn+l is divided by

j into three nonoverlapping horizontal segments SrS,*+I, S.+IS,* and S,*S, oriented

in the same direction. They are mapped respectively onto three segments S,-S,*+I,

Sn+IS,* and SnSt with folding or change of orientation at the points Sn and Sn+l on

the branches ,7,* and ,7,,+1 respectively.

The segments SrSn+ 1, and S,* St overlap each other over the segment S,*+1S,*. A point

S on Sn+l S,* lies on all three segments; therefore, the multiplicity of point S is three if

the inverse mapping is restricted to the segment S,-St. If point S lies on either S,-Sn+I

or S,*St, the multiplicity of S is one.

To end this section, we recall that a critical point /-£, on ff which is neither a local

minimum nor maximum is excluded in the above discussion because the image of/-(e is not

a cusp and behaves the same as a point on ,7 with cr_ :# 0. If a parameter A (or parameters)

defining U(T) can be varied so that two adjacent roots v,_ and _-,*+1 of a _ = 0 for A < A_

become a double root T, at A = Ae and disappear for A > A,, then the extremum point at

the double root T, is neither a maximum nor a minimum. There is no cusp formation in

the mapping of the neighborhood of point/£e at re when the parameter A > ,k,. A small

decrease in A from A, results in two cusps appearing like a butterfly [4] in the mapping of

the neighborhood of/-_'e. There is an increase in multiplicity of 2. The sensitivity of the

mapping on the parameter has been known in many other physical problems [5] and will

not be addressed here.

As a complement to the above quantitative analysis, we present in Appendix B the

qualitative analysis of the inverse transformation of (1.12) and derive the formula for the

retarded time for a point in the neighborhood of a branch near or away from a cusp. In

§3, we use the above statements {1) to {12) to formulate the rules for the partition of the

domain of dependence D.
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3. The Rules for the Partition of the Domain of Dependence

Guided by the statements {1} to {12} in §2, we formulate the general rules for the

partition of of the domain of dependence T_ for a medium moving at an unsteady velocity

U(r)L Since the multiplicity of/) is 1, we seek to partition # into I nonoverlapping

subdomains _ such that the mapping from _ to V_ in the _a plane by (1.12) is one to

one. Hence the multiplicity of l_ is 1, i. e., for each point in Vi there is only one retarded

time. Also we define the minimum number of partitions I.

Since different supersonic intervals in [0, t] axe separated by subsonic intervals, we can

study the partition of the domain of dependence for each supersonic region one by one.

Therefore, it suffices to study the case where there is only one supersonic interval (t., t*).

The Jacobian J of transformation (1.12) changes sign in the supersonic region across the

critical curve ff on which J = 0. The curve ends at T = t* on the _ axis. It begins at

r = t. from the _ axis if t. > 0 or from the semi-circular boundary B if t, = 0. Therefore,

the critical curve ff partitions # into two nonoverlapping regions l? + where :kJ > 0. The

region IF- is bounded below by the _ axis and above by the the critical curve ff if t. > 0

and in addition partially by/_ if t. = 0. From (2.1) we see that ff and hence IF- lie inside

the circular sector 0 _< ¢ _< Cm where ¢m = arccos[1/Mma_] and Mm,_ is the maximum

of M(r).
From {12a} and {12b}, we see that the mapping from IF+ to their images V + may

not be one to one. Further partitions of IF+ are needed to separate the region in V+

above (IF- below) the curve ff to the left hand side of a peak (valley), a local maximum

(minimum) point/_, at instant rn where n is odd (even), from the right hand side of the

peak (valley). There is not a unique way to do the separation. We choose to partition _'+

(IF-) by the large (small) circular arc C+ (C_-) passing through the point/(n with radius

C(t - _'n) at the retarded time rn for n odd (even).

Before we state the rules for the partition of the domain of dependence,/), for a given

velocity function U(r), r C [0, t] with a supersonic interval, we carry out the following two

preparatory steps.

Step 1. Graph the boundary of the domain of dependence f) in the _cr meridian plane,

bounded by a semi-circle 13 with radius Ct centered at the origin, and then the critical

curve ,/de_ned by (2.2). Locate the roots, of a' = 0 in (2.3a) while o'" # 0 and arrange

the roots, r,, , n = 1, 2..., N in decreasing order of r, i. e., r, > rn+l. These N points

divide j into N + 1 segments g]'j ,j = 1,... ,N + 1. Segment jj joins points [t_i_l and

/_'j. Here/_'0 and figN+2 denote the end points of ff at r = t* and r..

In this step we made use of {6} and {7} and note that these roots should be in accelerating

supersonic interval(s). The first segment ,]1 joins the end point at r = t" on the _ axis

to the local maximum point/_'1. When r. > 0, the last segment JN+I joins i_int /_'N to

the end point/_'N+I on the _ axis. Hence/t'N is a local maximum and .Y ha_ u, be odd.

If 7". = 0, the end point /_'N+2 lies on the semicircle/_ of r = 0. /_'N is a local maximum

(minimum) if N is odd (even) while N is odd (even) if a'(0) is positive In,'gative). Let

L + and L- denote the number of maximum and minimum points on j', then we have

L ++/;-=Nand

L + = L- + 1 = (N + 1)/2 when N is odd, (3.1)

12



L + -- L- = N/2 when N is even. (3.2)

Step 2. Graph the images of the boundary curve B and the critical curve ff in the (a

plane. The image 13 is a semi-circle of radius Ct centered at (-X(t), 0). The image J

forms cusps at the N image points Kn.

These N cusps divide J into N + 1 branches, Jn, the images of the segments Jn. The

domain od dependence :D is the maximum area bounded above by either B or J and below

by the ( axis.

Now we state the rules of partition:

Rule 1. Partition f) by the critical curve ,] into if+ where :t:J > 0

The domain 2- is bounded below by the _ axis and above by J if the velocity begins

subsonic M(0) < 1 and becomes sonic at T = t,. If the velocity is supersonic at r, = 0

the end point T or/_N+I lies on the semicircle/_ with polar angle ¢N+1 = arccos l/M(0)

and then/)- is bounded above in addition by the small arc CN+ 1 of the semicircle /_
-+

with 0 _ ¢ __ ¢N+1- Note that the large arc CN+ 1 of/_, with ¢N+1 _< ¢ __ _, is a

boundary of if+. A semicircle of constant _- in the supersonic region is divided by the

critical curve into two arcs C+ in 12+. The arc C- is the smaller one since its central angle

is arccos 1/M < 7r/2. The subscript n will be added to C+ when 7- -- vn, n = 1,.-., N + 1,

with TN+I equal to t,.

Rule 2a. Partition V+ into 1 + L + nonoverlapping domains V+-I, l = 1,2,..., 1 + L +,

by the L + large circular arcs, C+ with constant retarded time T21-1 passing through the21--1,

local maximum point A'21-1 on J.

Rule 2b. Partition if- into 1 + L- nonoverlapping domains V_[ , l = l, 2,..., 1 + L-, by

the L- large circular arcs, C_, with constant retarded time 7-2t passing through the local

max/mum point R21 on J.

The subdomains and circular arcs in 2 + are numbered so that they can be grouped

together as N + 2 subdomains _+ and N + 1 circular arcs Cff at 7-i using the plus or minus

superscript for i odd or even. Thus the domain of independence _ is partitioned into I

nonoverlapping subdomains _±, where

I = (1 + L +) + (1 + L-) = 2 + N (3.3a)

is the minimum number.

A subdomain _+ is bounded by the _ axis, two circular arcs C_-2 , C_ and two

segments of the critical curve J_l and ji+. Here, the segment J0 reduces to the end

point/-(0 of ,] and the arc _/:t: is empty when i _ 0.

Rule 3. Find the images of the I nonoverlapping subdomains _+ in the _cr meridian

plane one by one and denote the images by V/+ using the plus or the minus superscript for

i odd or even. The multiplicity of a Via: is one.

Since the mapping (1.12) is independent of the radial and polar coordinates, a and 8, we

can now define the volumes of integration of the integral in (1.16) in the _, _/, ( space.
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Rule 4. Rotate each one of the N + 2 subdomains Vi + in the meridian plane about the

axis to generate a volume of revolution in _, 7/, _ space and denote the volume by the

same symbol Vi +. The volume integral in (1.16) for the acoustic potential in the x space

is expressed as the sum of the N + 2 integrals over the volumes Vi±. The multiplicity of

each volume is one

In case that there is more than one supersonic interval in [0, t], say s of them, we apply

the above rules to these regions one by one. We locate the local maximum and minimum

on the critical curves in the regions, draw the corresponding partition circular arcs in the

_cr plane and find the images in the _cr plane. The total number I of nonoverlapping

domains in the _cr plane or the number of domains of integration in the _a plane is

I -- 1 q- s + N, (3.3b)

where N denotes the total number of maxima and minima on the s critical curves. When

s - 1, we recover (3.3a).

A formula or a numerical scheme is needed for the inverse solution of (1.12) to deter-

mine the retarded time r for a point S in a Vf. Consider a point S0(_0, a0) in a domain

V/± defined under Rule 2a or b. Let points St and Sr denote the left and right end points

of the horizontal segment in the domain passing through point S0. Each end point will

either be on a circular arc of constant r or a branch of the critical curve on which a' _ O.

Thus we know the values of r and _ and _ for both end points. Let us use the subscripts

l and r to denote the values associated with points St and St. If point So coincides with

one of the end points, the inverse solution of (1.12) is found. If So is not an end point,

J - d_/d_ _ 0 in the segment, hence there is a unique inverse solution _0. Now we

can determine the numerical solution _0 of (1.12) by Newton's method using the linear

interpolation formula from the end points to get the first estimate for _0. If the point So

is close to a cusp of the region or to an end point on a branch of the critical curve, we

shall compute the first estimate of 7"o by the approximate formula for the roots of (1.12)

presented in Appendix C choosing the root lying in between _ and _. Thus we have a

procedure for the determination of the retarded time To and provide a quantitative proof

that the multiplicity of point So in a domain V/+ is one.

Now we are ready to express the integral in (1.16b) for the velocity potential at

P(x, y, z) as the sum of integrals over the volumes of revolution V/, under Rule 4,

1 £ff + + + l_(t,x,y,z) - 4rt i=l dJVi
(3.4)

In (3.4), V_ denotes a subdomain in the meridian plane under Rule 3. For each l/i, Ti and

hence Ri , Mi and _i are functions of {, a and t independent of 8. This formula does not

need the knowledge of multiplicity.

To demonstrate the meaning of multiplicity and the application of (3.4), we consider

the source distribution to be a point source of unit strength created at point S(x', y', z') for

r > 0. If S lies in _1,'", I_,,, with ij E [1, I] and multiplicity m < I, then the intensity
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receivedat P is
rn

¢(t, x,y,z) = - _ 1/{4_r[nij - Mij _i_ l} • (3.5)
j=l

Note that the domain of dependence 7:) of point P(x, y, z) and the associated subdomains

Vj are t-dependent. They were empty for t < 0, grow in size and change in shape as time
t increases. Consequently, the multiplicity of point S is also t-dependent. The multiplicity

changes by an integer and results in the addition or removal of term(s) on the right hand

side of (3.5) and a discontinuity of the intensity at P.

Now we formulate the rules for the change of muitiplicity of point S, or point S(_, a) in

a meridian plane, when it enters or leaves a subdomain Vi+. Besides the axis of symmetry,

the _ axis, a subdomain is bounded by a segment of the semi-circle B, branch(es) of the

critical curve J and/or circular arc(s) C+i , i _< N, partitioning V +. These three types of

boundaries, which are moving, are called wave fronts.

The multiplicity re(t) of point S begins with zero at t = 0. If point S remains outside

of 7) for all t, we have re(t) -= O. The multiplicity changes when point S crosses a wave

front in entering the domain of dependence 73 or rather a subdomain. The rules for crossing

the three types of boundaries are different and hence are stated separately.

Rule B. When S crosses B to enter (leave) the subdomain V + or V- of_), the multiplicity

m increases(decreases) by 1.

Rule J. When S crosses a branch of ,7 with a'(r) > 0 from the left to the right hand

side, _he multiplicity m increases by 2, and with cr' < O, m decreases by 2. When the

direction of crossing is reversed the change of m is reversed.

Rule C. When S crosses a circular arc, C_, i <_ N, partitioning V +, there is no change of

multiplicity, because the Jacobian J does not change sign and S is entering one subdomain

while leaving another.

These three rules can be applied to determine the multiplicity of point S((a, aa) in 73

at an instant t, by moving from a point S0(_0,a0) with known m0, along a path to $1 and

counting the changes of multiplicity along the path. For example, we can pick a point So

outside of :D with o'0 = o'1 and hence m0 = 0 and the path to $1 is horizontal.

In the next section we shall demonstrate the applications of the rules of partition and

counting of multipIicity for various unsteady velocities U(T).

4. Examples

For the cases where the velocity U(r)_ of the medium relative to the coordinate system

x remains subsonic [2], [3], the 3acobian of the transformation of # to :D remains positive,

and the multiplicity of the domain of dependence 7:) in x is equal to one. These cases are

examples of the class I = 1, where I is the minimum number of nonoverlapping domains

in D. In the following, we present examples having maximum multiplicity greater than or

equal to 2. These examples must have a critical curve, where J = 0, and hence a supersonic

interval, (t,, t*) in (0, t). See {2 }.

It was stated in {1} and {2}, that the domain of dependence _ in the coordinate

system _, with the medium at rest, is independent of the velocity of the medium relative to
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the system x, the critical curve j is dependent on the velocity. The parametric equations

for ,] in a meridian _a plane are given by (2.2). The first step is to locate the local

maximum and minimum points on the curve J, i. e., to locate the roots of a'(r) = 0,

(2.3a), with a" # 0, which are the roots of

with

F(v) = (t - v)M' - M(M 2 - 1) = 0,

F'(r) = (t - v)M" - 3M2M ' # O .

(4.1)

Here we set C = 1 and hence M = U(r). To demonstrate the rules of partition and

counting in §3, we present first in §4.1 to §4.5 examples with only one supersonic interval

in [0, t] i. e., 8 = 1, and then in §4.6 and §4.7 examples with more than one supersonic

interval, s > 2. In the last two subsections there are also examples showing that the

maximum multiplicity in /:) can be less than the number of partitions or the number

of domains of integrations in (3.4), i. e., m < I. With s > 1 and N _> 0, we have

I=l+s+N>2. We begin in §4.1 withI=2.

4.1. Class I = 2, the critical curve j has no local maximum. From {7}, we see

that the curve does not have a local maximum or minimum. Thus (4.1) has no root, i. e.,

N = 0. The simplest example is that of constant supersonic speed [3], U I = M _ = 0 and

M > 1. In the _cr plane, the critical curve ,] is a radial line PT which partitions the

domain # into 17+ and _'- under Rule 1. Since j has neither a local maximum nor

minimum, further partition of 17± is not needed. In Fig. 2, the coordinates e and _ are

scaled by Ct and the concentric circles are circles of constant T/t with radius 1 - (r/t).

The radius of the boundary/_ is 1. Thus Fig. 2 remains the same for all t > 0.

The mapping of Fig. 2 onto the _a plane scaled by Ct will also be invariant for all

t > 0, as shown in Fig. 3. The superposition of the images V + and V- yields the domain

of dependence :D, i. e., V + t3 V-. The domain :D is bounded above by the critical curve

PT, a backward Mach line, and by the large circular arc QT of the semicircle B at T = 0

and below by the _ axis. Also shown are the semicircles at retarded time r C (0, t). These

semicircles are divided by their envelope PT into smaller and larger arcs. The family of

the larger (smaller) arcs covers V + (V-). Thus/:) = V + and the multiplicity of :D N V- is

two and that of :D _ V- is one. Detailed discussion of this partition can be found in [2].

It is well known [3] that the domain of dependence of a point P(x, y, z) with the

medium moving at a constant supersonic speed is the backward Mach cone from P. Since

the source distribution has been turned on all the time, the retarded time is in (-oo, t].

The multiplicity for a point in the cone is always 2. In the current initial value problem

the source distribution is turned on at r = 0, therefore, the retarded time has to be in

[0, t] and the domain of dependence shown in Fig. 3 is a finite part of the backward cone

with multiplicity 1 or 2, as defined in the preceding paragraph.

We use this simple example to show the meaning of multiplicity to an observer at P.

We consider a point source at S of unit strength initiated at r = 0. Since both points

P and S are fixed in x, S is a fixed point in the relative coordinates _, r/, _ and in the

_, rr plane. But in Fig. 3, the position of point S is moving along the radial line from

point S(1) towards the origin P (shown as the dotted line) with the instantaneous radial
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distance [S(t)P[ equal to [S(1)PI/t where S(1) is the position at t = 1. The point S(1)

shown in Fig. 3 is lying inside the backward Mach cone but outside :D. That is, at t = 1 the

multiplicity of point S is zero, or the signal from S has not reached P. At an instant ta > 1,

the radial line intersects the larger circular arc QT of B and enters the region :D _ V- with

multiplicity 1. At a later instant tb > ta, the radial line intersects the smaller circular arc

of B and enters the region V- with multiplicity 2. The observer receives the signal from

S(tl) with intensity 1/(4_rR*) when tb > tl > ta and with the intensity doubled 1/(2rR*)

when t > tb. Here R* denotes the pseudo-distance (1.17).

Additional examples for this class of I = 2 will be found as "degenerated" cases of

the classes of I > 2 in the following subsections.

4.2. Class I = 3, the critical curve has one local maximum. The simplest example

for this class is the case of constant acceleration from zero to supersonic speed. By choosing

the time scale, we can write M = _- and then the the supersonic interval is from t. = 1 to

t* = t > 1. Equation (4.1) has one root, 7"1= t _/3. The curve j begins from the _ axis at

_- = 1 with M. = 1 rises to the maximum/_'1 at _-1 = t 1/3 and descends to the origin at

_- = t. Thus this case belongs to the class of N = 1 and I = N + 2 = 3. Note that we can

no longer get a time invariant critical curve and partition of the domain of dependence by

using Ct as the length scale and t as the scale for v as we did for constant supersonic speed

in §4.1. We note that whent < 1, M < 1 for_- 6 [0, t], j does not exist. Whent > 1,

M > 1, j exists in the interval [1, t] but j and the interval do not grow proportionately

with t. We have to construct the critical curve and the partition for a given t.

Figure 4 shows the critical curve j for t = v_. Besides applying Rule 1 to partition

into 12+ and 12-, we have to apply Rule 2a to partition 12+ by the circular arc C1+ of

constant _-_ passing through point/_'1 into 12+ and 12+. Thus # is partitioned into I = 3

nonoverlapping domains, 1/+, 1)"+ and 1_-.

The images of the nonoverlapping domains in Fig. 4 are the three domains of integra-

tion in _ and cr in (3.4). The superposition of these three domains for t = x/5 onto the _a

plane is shown in Fig. 5. The union of these three images gives the domain of dependence

:D which is bounded above by the semicircle B and by branch ,72 and below by the _ axis.

Besides the _-axis, V- is bounded by the two branches J1 and J2, V + by the circular arc

C+ and the branch J1 and V + by the semicircle B, the arc C+ and the branch J2. Note

that V- 6 V +, V +NV + 6 V- and V-ClV + # 0. The multiplicity of V- NV + is 3,

that of V- _ V + is 2 and that of :D _ V- is 1. More detailed descriptions of these three

domains of integrations are given in [2].

We use this example to explain that the domain of dependence :D, the semicircular

disc of radius t in the meridian plane, is the domain for all source fields _(7-, _-, y, z) in

the interval (0, t). But for a given source field, there is an effective domain of dependence

which is a subdomain _. For example, if the source field is created at a time b > 0, i. e.,

- 0 for 7" < b, then only the part of _ where the retarded time _- lies in the interval

[b, t] will contribute to the acoustic field at point P at time t. This effective domain of

dependence _e is the subdomain of _ below the semicircle/3e of w = b or radius R = t - b.

Thus only the portion of the critical curve ,] and the subdomains _+ lying inside this
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semicircular disc Be will be mapped to the _a plane.l For the current example, M(T) = r,

(4.1) becomes

F(T) = t-- 7-3 = 0, T E (b,t), (4.2)

with F'(T) = -3r 2 < 0. Equation (4.2) has one root rl = tl/3 provided that b < t_/3.

For b < 1, the supersonic interval (1, t) is in (b, t). Hence the critical curve ,f and the

large circular arc C+ remain inside De. The subdomains _'- and 1)+ shown in Fig. 4 remain

unchanged. Only the subdomain _+ is reduced in size with the semicircular boundary

replaced by a smaller one Be- Consequently, the images ,7, V- and V + in the _cr plane

remain the same as those shown in Fig. 5. The image V + is reduced in size with the

boundary B replaced by Be.

If T1 > b > 1, part of the segment J2 and the subdomain V'+ in addition to that of

V'- in Fig. 4 are outside of Be or cut off" by the semicircle Be and their images will be cut

off in Fig.5. Only the image V + remains unchanged.

When b = rl, the semicircle Be passes through point/-_1, coincides with the semicircle

C1 at 7"1 and completely cuts off` the segment ,.72 and the subdomain V+ in Fig. 4. Thus

the critical curve ,Te -- ,]1 does not have a local maximum. The domain of dependence De

in the _a plane is equal to V + in Fig. 5. The image V_ is bounded by the _-axis, `72 and

the small circular arc C1 which together with the arc C+ form the semicircle Be.

When t > b > rl, the semicircle Be not only cuts off the entire branch ,f_ , the circular

arc C+ and the domain _z+ but also parts of the branch ,]_ and the domains V'- and V+.

The critical curve Je, which is the remaining part of J1, decreases monotonically to the

axis as r increase from b to t, i. e., (4.2) has no root. Thus our example degenerates to

the class of I = 2 when t > b >_ _-l-

For a fixed b > 1, (4.2) defines a critical time te -- b3 for which F(b) = 0, t_ = r_ and

(4.2) has no root. As t increases over to, I jumps from 2 to 3. That is, an observer at point

P will receive signals from point S, fixed in the coordinate system x, twice if S E V- when

t < t¢ with I = 2 but three times if S happens to be in V- U V + when t > t¢ with I = 3.

4.3. The class I = 4. The critical curve J has one local minimum and one

maximum. We consider the case of constant rate of acceleration from an initial Mach

number M0, i. e., M(r) = Mo + r 2, with F(r) = 2r(t- r)- M(M 2 - 1) and F" =

-2 - 6M(M + 4r 2) < 0.

If M0 _< 1, the supersonic interval begins at r = t. > 0 with M. = 1, a. = 0 and
!

a. > 0. Using {8} and F" < 0, (4.1) has only one root and the curve ,] has only one

maximum point. Thus the case for M0 _< 1 belongs to the class I = 3.

To create an example of the class I = 4, we consider 3/o > 1 with t. = 0 and t* = t.

With F(0) < 0 and F(t) < 0, or a'(0) < 0 a'(t) < 0, (4.1) can have two roots or none. It

is clear that M02 - 1 has to be sufficiently small so that F(_') can be nonnegative in (0, t),

i. e., (4.1) has two roots. For a given t, there is an upper bound below which two distinct

roots exist. When M0 is equal to the upper bound M_0, these two roots coincide in one

double root r_ for F(T_) = F'(Te) = 0. This and the equation M_ = M_0 +r_, define re, M_

t This problem can be identified with the one with the source field created at "_ -- 0

while M -- b by the time shift, "_ = T -- b and t"--- t - b with velocity U('7) = U(_-).
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and we0as functions of t.t For example when t = 2.25, we have Mc = 1.382, Tc = 0.3328

and Mco = 1.275.

If the initial Mach number M0 k Me0, (4.1) does not have two distinct roots and

hence the critical curve LT has no local maximum. Hence this case belongs to the class of

I = 2 in §4.1.

For 1 < M0 < Me0, (4.1) has two distinct roots, the critical curve j has a local

maximum and a local minimum as shown in Fig. 6 and the image J has two cusps forming

a "butterfly" as shown in the insert in Fig.7. In those two figures, we have M(T) = 1.15+r 2,

T 6 [0, 2.25], i. e., M0 = 1.15 and t = 2.25. Since M0 < Me0, (4.1) has two distinct roots

_'1 = 0.6093 and _-2 = 0.0918. We have N = 2 and I = 4.

As shown in Fig. 6, the critical curve J begins with a(0) = 1.1111 at point T on the

semicircle/3, decreases to a minimum at point I(2 along the segment J3, increases to the

maximum at point/711 along J2 and then decreases to the origin P along J1. By Rule 1

the critical curve j partitions the domain of dependence 7) into I7±. By Rule 2 and 3,

these two domains, 17i are partitioned respectively by the large circular arc C+ passing

through I<1 and the small circular arc C_- passing through/-(2 into 17+, 17+ and I72- , 1_4-.

Thus the domain of dependence 7) is partitioned into four nonoverlapping domains.

Figure 7 shows the images of the critical curve, the semicircle when v = 0 and the

two circular arcs in the _cr plane. Because the initial Mach number M(0) is above 1 and

below the threshold value Mc0, the circular arc C_- is approaching the semicircle B from

the right hand side while the branches ,]2 and J3 and the two cusps K1 and K2 can be

seen only in the insert with 20× enlargement. The domain V 4- bounded by B, C2 J3 and

the _-axis is disappearing. In addition to the _-axis, V 2- is bounded by ,72, J1 and (32, V +

by C + and J1, and V + by B, J2, J3 and C+. The branch J3 begins at point T tangent to

the circle/3, goes downwards on the right hand side of B as the envelope of the circles of

__" The branches ,]3 and J2 and the semicircle Bconstant T E [0.7-2 and ends at the cusp _ 2.

form a curvilinear triangle which is the intersection of the four domains of integration in

the _a plane. The intersection has the maximum multiplicity 4.

If we increase M(0) to the threshold value M_0, the two cusps K1 and I(2 and the

branch ,72 disappear. Branch ,71 joins smoothly with J3 to form a smooth critical curve

,7 with no local maximum or cusp. The partitions by the arcs C+ and C_- are no longer

needed. Thus we recover the class of I = 2. If we decrease M(0) to 1, the minimum point

K2 moves down to the _-axis and leftward to B while the branch ,73 and the domain _t-

disappear. Thus we recover the class of I = 3.

Similar to the discussion in §4.2, for a given M(0) = 1.15, the critical time of observa-

tion, when Mc0 = M(0), is tc = 1.074. When t < tc, an observer will receive signals from

point S at most twice in the class of I = 2. When t exceeds to, the observer can receive

signals from the same point S four times in the class of I = 4.

t From F'(vc) = 0 we get 7-_ = (M_ - 1)/(6Me) and from F(vc) = 0, t 2 = (M_ -

1)(3M_ + 1)2/(6M_). The second equation defines t > 0 for a M_ > 1. The inverse

transformation is also unique. Thus for a given t > 0, the second equation yields a unique

Mc > 1 and then the first one, 7"c > 0. They in turn define the corresponding initial Mach

number M_0 = (5M_ 2 + 1)/6Me > 1.
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4.4. I = 5. The critical curve J has one local minimum and two local maximum.

It follows from {7} and {8} that /_'2 is the local minimum point and/_'1 and/-_'3 are the

two maximum points, with vl < 72 < r3 and that a'(t.) > 0 and M(t.) = 1 for t. > 0 or

M(t.) > 1 for t. = 0.
We consider the case that the acceleration is a quadratic function of v,

M'0- ) = co + 2clT + 3c2r 2 ,

and hence M is a cubic function,

M(_) = [co + C,T + C2-21_,

(4.3)

(4.4)

with co +c_ +c2 = 1. We have chosen the time scale such that M(0) = 0 and M(1) = 1. As

explained in §4.2, a nonzero initial value M(0) can be converted to (4.4) by an appropriate

time shift and change of coefficients c0 and cl.

We consider the case that the speed U = M is accelerated to supersonic M_ > 1 at

r = a > 1, followed by an interval of deceleration to 3Ib at _- = b and then acceleration to

_- = t. To show the accelerating and decelerating intervals explicitly, we rewrite (4.3) ast

M'=c(v-a)(v-b) with b>a>l and c=6/[2-3(a+b)+6ab]. (4.5)

To insure that M > 1 during deceleration, we assume that M(b) > 1.

Using (4.5), we find F(1) > O,F(a) < 0 and F'(T) < 0 in the interval (1,a), therefore,

(4.1) has only one root in the interval. Since F(b) < O, F(t) < 0 while F"(T) < 0 in the

interval (b,t), (4.1) has either two roots or none in the interval (b,t). Therefore, LT will

have a maximum in the first acceleration interval, (1, a) and a minimum and maximum or

none in the second acceleration interval, (b, t), in agreement with {8a}. Whether there is

a pair or not in the second interval, i. e., whether I = 5 or 3, depends on the values of a, b

and t. Let us consider the function M(T) specified, i. e., a and b specified while t varies,

as we study the signal received at point P from a point S. It is clear that when 1 < t < b,

(4.1) has only one root, and j has only a maximum. We have the class of I = 3. There

is critical time tc > b when there is a double root _-d of (4.1) in the interval (b, tc). By

eliminating (to - vd) from F(vd) = 0 and F'(Td) = 0, we get an ec_uation for Td,

M"(Td)[M20"d) - 11 - 3M(ra)[M'(rd)] 2 = 0 (4.6)

and then compute tc from (4.1). We have an example for the class of I = 5, when t > to.

Figure 9 shows the domain # and the critical curve j for a = 1.7, b = 3.05 and

t = 5. Now tc = 3.666 < t, we have an example for the class of I = 5. The curve j which

partitions # into _:+, has a maximum point /(1(0.880, 0.642) at _'1 = 3.911, a minimum

point R½(1.941,0.287) at r2 = 3.077 > b and then a maximum point/_'3(3.078, 1.641) at

v3 = 1.51t. The larger circular arcs C+ of r_ and C+ of 73 partition the domain _7+ into

Here we assume that the quadratic function (4.4) has two roots in the interval (1, t).

We can have examples of I= 5with M' = [(v+a) 2+b2]/[(l+a) 2+b 2] > 0. See the

report [6]
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three, I_+, 17+ and l7+. The smaller circular arc C_- partitions the domain V- into two,

V_ and V4-.

The images of these five nonoverlapping subdomains of 79 in the _0- plane are defined

one by one and the acoustic potential _(t, x, y, z) is given by (3.5) as the sum of integrals

over the five images V+, V(, V+, V4 and V+. These five image subdomains are super-

imposed onto the _a plane as shown in Fig. 10a. Their union is the domain of dependence

_D. The five subdomains Vi ± can in turn be identified from Fig. 10a by tracing the images

of the boundaries of _±.

Fig. 10b shows the critical curve Y enlarged five times in order to display the four

branches and the curvilinear triangle bounded by the three branches ,71, J2 and J3 which is

the intersection of the five subdomains. The critical curve and the part of the semicircular

B in the enlargement are shown in heavier lines than those for the three circular arcs C+,

C_- and C+ because multiplicity does not change across these three arcs, according to Rule

C. The numerals in bold face indicate the multiplicities in a region "R. bounded by B, J

and/or the _ axis. We demonstrate the counting of multiplicities by applying Rules B

and ..Y instead of identifying T4 as the intersection of subdomalns Vi ± and counting the

number of subdomains in the intersection. For example, we show by counting that in the

curvilinear triangle the multiplicity is 5.

Consider the change of multiplicities from left to right along a horizontal line £ of

constant 0-c below the cusp K1 and above If2, i. e., 0-2 < _rc < O'1. A point on/: lying to

the left of the semicircle 13 is outside of/) and has multiplicity m = 0. When £ crosses

/3 from left to right and enters V +, the multiplicity m changes to 1 according to Rule

/3. When 13 crosses the branch ,74, m = 3 according to Rule ,7. When £ crosses ,72 and

enters the curvilinear triangle, m = 5. When £ leaves the triangle and crosses ,71, ,73 (or

,73, ,71), and then/3, m = 3,1 and then 0. If it crosses ,73,/3 and then ,71, m = 3,2 and

then 0. If the horizontal line is below K2, m changes from 0, 1,3, 2 and then 0. If the line

is between K1 and 1(3, m = 0,1,3,1 and then 0. If the line is above/(3 but below 0" = t,

m = 0, 1 and then 0.

It is clear that we can find examples which require an even greater number of par-

titions, but we have given plenty of examples to demonstrate the rules of partitions and

counting of multiplicities. We note that although the velocity U or Mach number M in

the examples are polynomials of v-, the rules are applicable when M is not a polynomial.

This is demonstrated in the following example.

4.5. The speed U(r) is periodic We consider U = M = uo -(c/a)cos(at + b) and

t = 7fla. Fig.11 shows the domain of dependence 79 and the critical curve ,.7 with a =

1, b = 0 and c = 0.8a and u0 = M0 = 2 and t = yr. The speed is supersonic in the interval

[0, t]. The critical curve begins on the circle/_ and ends at the origin. Th,'r," i_ one local

minimum [/2 and one maximum/_'1 at 7" equal to 0.28194 and 0.67991. With .V = 2 and

I = 4, the partition of 79 into four subdomains is similar to that in Fig 6 Figure 12a

shows the image of Fig. 11 in the _cr plane. Figure 12b shows the 45× enlargmnent of the

region containing the cusps K1 and K2 and the area bounded by the thre_ branches, ,71,

,7"2, and ,73, only in which the multiplicity is the maximum, 4. Again note the similarity

of Fig.12 to Fig. 7.

In the following subsections we shall present examples with more than one supersonic
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interval in [0,t]. Let there be two intervals (52,51)and (54,53)with 0 _<t4 <: t3 _< t2 <

L1 _< t. The speed is subsonic in (t3, e2) and sonic at the end points. From {7}, we see

that there is at least one maximum on the critical curve in the first interval (t2, 51). In the

second interval, the critical curve may not have an extremum, if e4 = 0 and the speed is

decelerating from supersonic speed M(0) to sonic speed. Since N > 1 and I = l+s+N > 4

for s > 2, we deal first with the class I = 4.

4.6. Class I = 4, s = 2, two critical curves having only one local maximum. As

a simple example, we consider a linearly accelerating motion in the interval [0, t],

M'(r) = v-b, with b E (0,t). (4.7)

The velocity function is

M(r)=M0-bT+r2/2, with M0 >1 and M(t) > 1. 4.8

We choose M0, b and t such that the minimum Mb = M(b) = Mo - b2/2 is subsonic i. e.,

1 > Mb > 0. The speed becomes sonic at 52 and t3, where

= b+  4z_ 2c and = v4Z- 2c, (4.9)

with c = M0 - 1. Here we have two supersonic intervals (t2, t] and [0, t3). Only the critical

curve in the first interval has a maximum at point _21 at the retarded time rl E (t2, t).

As shown in Fig. 13, the domain of dependence D is partitioned into four nonoverlapping

regions V'+, 172-, 17+ and 174-. The region _- is bounded by the _ axis and the two

segments of the critical curve, J11 as r decreases from t to 7-1 and _12 from T1 to 52. The

region 174- is bounded by the _ axis, the small circular arc/_- and the critical curve j2

from t3 to 0. The region, where J > 0, is partitioned by the large circular arc C1+ of

constant retarded time Vl into 1)"+ and 12+. The segments on the _ axis bounding 172 and

174, where J < 0, are _-_-2 and _3_4. With _j' = C(t - tj), we have _j > _j-1. Here we

havetl=t,_l =0andt4=0,_4=Ct-

If the images of 172- and _- do not intersect, i. e., V2- _ V4- = O, the maximum

multiplcity of D can only be 3 < I = 4. This requires that the image segments _1 _2 and

_s_4 do not overlap. Noting the sign of J, we have _2 > _1 and _4 > _3 while _2 < _3. For

the two segments to be nonoverlapping, it is necessary that _1 < _4, i. e.,

J(i' f::_4-_1 > M(T)dT, or <M> = <1. (4.10)
el -- _4

This says that the average Mach number < M > or speed < U > in the interval [54,51],

has to be subsonic. This statement is valid for any M(r) having two supersonic intervals

and an intermediate subsonic interval in [*4, eli.

In Fig. 13, we have b = 1.0, M0 = 1.18, X(0) = 0 and t = 2.4. The speed is sonic at

t2 = 1.8 e3 = 0.2, Mb = 0.68 arid < M >= 0.94 < 1. The images of the four subdomains

in Fig. 13 are shown in Fig. 14a. A 3 x enlargement of the region containing the critical

curves is shown in Fig.14b where the bold faced numerals denote the multiplicity. In this
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casethe subdomainsV2- and V_ do not overlap and the maximum multiplicity is equal

to3<I=4.

Figures 15 and 16a and b show a counter example of Figs. 13 and 14a and b with the

same t = 2.4, and smaller b = 0.8. The speed is sonic at t2 = 1.33 and L3 = 0.27, with

Mb = 0.70. There is a longer second supersonic interval and the average Mach number

< M >= 1.18 is supersonic. As shown in Fig. 16, the subdomains V Z and V4-- do overlap

and the maximum multiplicity is equal to [ = 4.

4.7.More than two critical curves, each having only one local maximum We

consider an example with periodic velocity variation about a mean subsonic speed. Then

there are three subsonic and three supersonic intervals. We choose X(0) = 0, t = 5.0 and

M'(T) = 0.5zr sin(rrv) and M(r) = 0.75 - 0.5cos(zrv).

As shown in Fig. 17, the domain of dependence 73 is partitioned into seven nonover-

lapping regions by the three nonintersecting critical curves _i, i = 1, 2, 3 and the large

circular arcs (_i passing through the maxima/_-i. Therefore I = 3 + 3 + 1 = 7. The images

of the seven subdomains in Fig. 17 are shown in Fig. 18a. A 2x enlargement of the region

containing the three critical curves is shown in Fig.18b where the bold faced numerals

denote the multiplicity. In this case the maximum multiplicity is equal to 3 < I = 7.

5. Conclusion

In the interaction of an acoustic field with a moving airframe we encounter a canonical

initial value problem for an acoustic field induced by an unsteady source distribution, q(t, x)

with q =_ 0 for t < 0, in a medium moving with a uniform unsteady velocity U(tfi in the

coordinate system x fixed on the airframe. Signals issued from a source point S in the

domain of dependence _D of an observation point P at time t may arrive at point P more

than once corresponding to different retarded times, 7 in the interval [0, t]. The number of

arrivals is called the multiplicity of the point S. The multiplicity equals 1 if the velocity U

remains subsonic and can be greater when U becomes supersonic. For an unsteady uniform

flow U(t)_, the acoustic potential _(t, x, y, z) is governed by the convective wave equation

with variable coefficients, the velocity U(t) and the accelerati on _r(t). The solution O(t, x)

is given indirectly via the solution of the corresponding acoustic field _ in the coordinate

system "_ with the medium at rest. The solution (1.16) induced by the source distribution

q(t, x) is

1 ff£ded, dCq(v'x+_'y+rhz-t-_) (5.1a)_(t,x,y,z) = 4zr ]R- M_[

l f f fv d d dC q(r"x + + + ¢)=, In, - M, ,I
(5.1b)

To evaluate the integral over the domain of dependence _D in (5.1a) we need to relate T,

R and _ to t and the coordinates of the source point S(x + _, y + rh z + _). The implicit

relationships are:

j_T t
= _ + U(t')dt' and R 2=C(t-r) 2 = _2 + r]2 + _2 . (5.2)
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They yield multiple retarded times ri in [0,t] and the corresponding Ri and _i. We need

to find the roots of (5.2) and identify the domain Vi in the _, _, _ space for each 7i. Then

is written as the sum of integrals over the smallest number I of domains V_ in (5.1b).

Here I denotes the maximum multiplicity of :D. It is the purpose of this paper to formulate

the rules identifying these dora ains Y_ for a medium moving at an unsteady speed, U(t).

First we study the Jacobian of the transformation x to _ in §2 and then use these studies

to formulate in §3 the rules for the partition of the domain of dependence, _ in the

space, into nonoverlapping subdomains _ for an unsteady velocity, U(v) , 7" • [0, t]. We

show that the partition has the required property that the value of T and hence R and

defined by (5.2) for a point (_, r/, () in an image Vj is uniquely defined. Thus the domain

of integration in (5.1b) is the sum of those images l_'s. Since those images may overlap

in the _, 77, _ space, signals from a point S in the space lying in m of those images will

reach point P m-times. Hence m is the multiplicity of point S. The rules for counting

the multiplicity of a point in D are also stated in §3. The analyses in §2 and §3 justify

the assertions made in [2] for the case of a constantly accelerating speed. Additional

examples with unsteady velocities, accelerating and/or decelerating at different ranges of

Mach numbers are presented in §4 to demonstrate the application of the rules of partition

of _ and to show the singularities of ,Y in the _, r/, ff space.

Appendix A. Domain of dependence and the region of influence in a constant

supersonic flow We study the domain of dependence :D of an observation point P at an

instant t > 0 for an acoustic field created in the interval [0, t] and the region of influence of

a source point S during the interval [r, t] where r denotes the retarded time. Consider the

meridian _o" plane in the coordinate system _, 77,( containing points P and S. The _-axis

is in the direction of the flow, _. Point P is the origin and :D is bounded by the _ axis,

the backward Mach line from P and the large circular arc of radius Ro = Ct with _- = 0

and centered at G on the _-ax-is with _ = -MRo. Note that the region of influence of a

source point S for the interval [0, t] is the mirror image of the the domain of dependence

of P with respect to the a axis and point S at the origin. Fig. 19 a and b show the two

domains of integration V + and V- for M = _ in a meridian plane.

The backward Mach line from P is the envelope of the semi-circles g of constant

7- • [0, t] with radii R = C(t - v). The Mach line divides a semi-circle into two arcs,

the larger arc g+ is convex while the smaller arc C- is concave from the Mach cone. The
domain V + coincides with :D and is covered by the family of convex circular arcs C + . The

domain V- is covered by the family of concave circular arcs, g- with V + _ V- equal to

the semi-circular disc of radius Ct centered at G. Consider a source point S in V- • V +.

Point S lies on the intersection of two circular arcs in V +, the convex circular arc g +

of radius R + centered at G + with _ = -MR + in V + and the concave circular arc C- of

radius R- centered at G- with _ = -MR- in V-. Note that these two arcs are associated

with different semi-circles or different retarded times _'+, with _'+ > r-. In Fig. 19a and

19b, we choose T+ = 0.75t and v- = 0.25t. The signal created at the retarded time r- at

point S in Fig. 19b propagates at time t onto a sphere of radius R- while its center travels

parallel to _ to S- with [SS-[ = MR- = IG-PI. The region of influence of point S with

retarded time v- (in the meridian plane) is bounded by the two forward Mach lines from

5' and the circular arc of radius R- centered at S-. Since points S, S-, P and G- are the
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vertices of a parallelgram, point P lies on the small circular arc. The signal initiated at

time r- from point S reaches point P at time t. Likewise we see in Fig. 19a how the signal

from S at the retarded time r + reaches P at time t. Similarly, we can see for the case of

an unsteady moving medium the connection between the region of influence of point S in

the interval [v, t] and the propagation of the signal from S initiated at _- reaching point P
at time t.

Appendix B. Transformation of a Neighborhood of j in the _a plane onto the

_a plane and the Inverse Transformation

We study the transformation of a point S(_, ac) in the neighborhood of the critical

curve J onto a point S(_, ac) near J and its inverse transformation. We add the subscript

c to a to shown that a remains unchanged in the transformation.

First we consider the point S near a branch of j but not too close to the extremum

point K1. Using the same ordinate ac for the neighboring point S_(_c, ac) on j1, we use

(1.9) and the equation for cr in (2.2) or (2.5) to find v_ or Rc first and then _ from (2.2),

and _c from (2.5), for the corresponding point Sc(_c, ac) on J. Here the subscript c denotes

the value at To.

Note that we are considering,

[_-(c[<<1 and hence ]r-rc[<<l while o"¢¢0 (B.1)

Here r denotes the retarded time corresponding to point S by (1.9),

,-= t- R/c and R = _ + _,_. (B.2)

Using (B.1) we simplify the transformation (1.12) from _ to (. Using (1.12) and expressing

M by the Taylor series in (r - r_), we have

r C r_-_c = _-_c+ CM(_)d_=_-_c+CM_(r-rc)+_M'c(r-rc)2+O((r-rc)a), (B.3)

Now we express C(T - rc) in power series of 6_ = (_- _,),

co-- ,-_)= -(R- R_) = -(O_R)_,S_- 1-(_--m2'_'"_ _ + O(_)

_c z O(_-- 6c 2R 3 6c + ) •

(B.4)

Using (2.3a) and (B.4) in (B.3), we get

M'_Rc-CM¢(M2¢ - 1) 2 0(63¢)6_ +
2CM_Rc

.VM_- 1 o'o(___?,,,,_ + 0(6_) ,
2CRc

(B.5)
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which in turn definesthe inversetransformation,

_= ,_c4- _(M_ - 1) -]/4 _,,/(_ - {_)Io' • (B.6)

This implies that a point S in the neighborhood of a branch ,71 (B.1), on the side with

o'_(,_-,,_)> o, (B.7)

is mapped to two points on both sides of J. For a point S on the other side of ,J', with

(_ - _c)atc < 0, (B.6) says only that there is no inverse solution S in the neighborhood of

point ooc. Because of (B.1), (B.6) does not include inverse solution(s) of (1.12) which are

away from the branch ,]1. From (2.6), a'c and (tc are of oppsite sign and (B.6) implies

(i) Along a branch of J where ac increases (decreases) with increasing re, a point S on

either side of j is mapped to a point S on the right (left) hand side of ,]" with _ - (_

positive (negative) while _ decreases (increases) along J. The multiplicity of the

point S is at least 2.

Now consider the case that the point S(_, a) is close to an extremum point on J, say

- - t = 0. Here we use subscript 1 to denote the value at _h- Theat point KI(_I, al) where a 1

distance between S and/_'1 is small, i. e., ]S/_1 ] = v/(_ - _x) 2 + (e - el) 2 << 1, and hence

Cl-,-- _-,I= IR- R_I_<ISKll <<1. (B.8)

= 0, we need to include at least the third order terms in the representationBecause of a 1

of the transformation (B.3) by a power series of r - vl or rather R - RI,

_-_1 =___I_MI(R_R1)+ ___._MI(R_R1) 2 6C21 MI,(R_R1)3+O((R_Ra)4). (B.9)

With _ = "v/n 2 - G2, we expand _ - _1 in a double power series of R - Ra and a - 0 1 .

Using (2.4b), we note
Io - all _< I_'¢-_11 = O((5o- _1)2) , (S.10)

while IR - Ral can be O(l_c - _1 ]). We keep O(IR - R113) terms but not fourth order terms,

e. g., (a- al) 2 and (R- Ri)2(a-al), and get

1(_2_ 1(_3_aS (R R1) + )1(R - R1)_+ )1(R - R1)__- _ = (-_)1 - 2,OR 2 g, aR3

a_)_(_ a_
-F(-_ -G1)-F(O---_G)I(R-R1)(G-°'I)+O((R-'R1)4) "

(B.11)

With the partial derivatives at 7"1,

O( nl 02_ (72 Ma(M_ - 1)

OR _1 M1, OR2 =-'-_1 = R1
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03_ 3a_ R1

OR3 _51

69_ -- 0"1 --IM12 - 1
Oa _11 =

and

(B.11) and (B.9) yield

3M_(M_ - 1)

02_ axR1 v/M - 1
OdOR _ R1

_--_, --- v/M_ - l (a-oh) + M2_/_1 - l(a-al)(R- R1)
R1

_ll _ A'2 / _ _'2

_ o_ v_x - 1 (R_ n_)_ + 0(1¢_- ¢,?) •
6C2R1

Since a, al and R1 are known, (B.12) becomes a cubic equation for (R - R1) or/{,

(R - R1) 3 + p(R - R1) + q = 0,

where

-6C2(a - o'1) 6C2R1H

P= " ' q = a_' M_ v/ M_(71 1
and H-- (_-_l) + (a-al)_/M 2 - 1.

Here H denotes the horizontal distance from point (_, a) to the tangent line of ,.7 at the

cusp point K1. The character of the roots of (B.13) depends on the discriminant of the

cubic, _ = q2/4 + pa/27. If _ < 0, (B.13) has three distinct real roots, _ = 0, three real

roots with two equal and _ > 0, only one real root.

In order to have three real roots it is necessary for p < 0 that

(o-ol)*[' > 0. (B.14)

This says that

(ii) For the cubic (B.13) to have three real roots, it is necessary that a should be below

the local maximum or1 on J or above the local minimum.

When _ > 0, we have

H2 <- 8C2M_(M_^,,n2 - 1)(a -al) 3 . (B.15)
_0" 1 AL 1

With the equality sign, (B.15) becomes the equation describing the two branches of ,.7 near

the cusp $1. For a point S(_, a) in the interior bounded by these two branches, we have

f_ > 0, and hence there are three distinct real roots for _ or T. In the exterior there is only

one real root. Thus using (B.14) and (B.15) we conclude that

(iii) For a cusp with a local maximum el, a point S in the interior bounded by these

two branches has image point S inside the domain D+ bounded by j and two image

points in #- lying to the right and left of the local maximum point $1. For a point
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S exterior to the region bounded by the two branches, there is only one image point

_,_ in _)-.

(iv) For a cusp with a local minimum a2, a point S in the interior bounded by the two

branches has one image point S in 79- and two image points in/3 + lying to the right

and left of the local minimum point $2. For a point S exterior to the region bounded

by the two branches, there is only one image point S in 73+.

Again we note that the above analysis is local and does not account for the roots of (1.12)

not in the neighborhood of an extremum point, if any. Thus we say

(v) The multiplicity of a point S(_, a) near a cusp and in the interior bounded by the two
branches is at least 3.
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I I
X

Fig. 1 The coordinate system (_', y, z) with the medium at rest and the system (x, y, z), with
x = • + x(t).

,/(ct)
t

p r

Fig. 2 The domain of dependence # of point 15 at instant t > 0. in a meridian plane, the _a

plane, with origin/5. With length scaled by Ct, the domain/5 is the unit semicircular

disk above the _axis. A fixed point S shown at t = 1 is moving towards the origin

as t increases. Also shown is the partition of # into two nonoverlapping regions, 17+

by the radial line PT at ¢ = arccos 1/M representing the critical curve for a constant

supersonic speed at Mach number M = v/5.
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Fig. 3 The domain D and point P are the images of _ and/5 in Fig. 2. The domain D,
which depends on the relative velocity U_, is shown here in the meridian _cr plane

with origin P for a constant supersonic speed at M = v/-_, with length scaled by Ct.

Fig. 4 The partition of the domain of dependence # of point 15 in a meridian _ plane for

a constantly accelerating motion. Here U(r) = Cr , r E [0, v_], with final Math

number M = v_. The critical curve j has a maximum cr(rl ) at point /_'1 with

Wl = 51/6. The point/-{1 divides 3 into 31 and J2- The critical curve partitions f)

into V'±. The circular arc C + partitions V + into V + and 17+.
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Fig. 5 Images of curves shown in Fig. 4 in the (a plane. They are the semicircle B, two

branches of the critical curve J, J1 and ,72, and the circular arc C+ through the cusp

K1 on J. An enlargement of the neighborhood of the cusp K1 is shown in the insert.

Also shown are the common tangent to the two branches, and the tangents at points

on the branches. These tangent lines are the local Mach lines.
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!

Fig. 6 The partition of the domain of dependence # of point t5 in a meridian _c_ plane for a

constant rate acceleration from a low supersonic speed. Here M(T) = 1.15 + r 2 , r E
[0, 2.25], with final Mach number M = 6.2125. The critical curve j has a local

maximum at point /_'1 and minimum at point/_'2. The curve partitions _) into _7+.

l_+ is partitioned by the circular arc C_+ starting from point/_'1 into 171+ and V+, and

V- by arc C_- from point I-(2 into _- and 174-.
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a f

Cr

Fig. 7 Images of curves shown in Fig. 6 in the _a plane. They are ttl," srmMrcl," B. the

three branches of the critical curve, ,71, ,72 and ,.73, and two circular arc- t'l* and C_-

from the two cusps K1 and K2 on J. Note the small difference betw,,'n C_-, and

the semicircle B. A 20 x enlargement of the neighborhood of the cusps K2 and I(3

is shown in the insert. Note that the branch ,]'3 begins at point T tangent to the

semicircle B and continues downward to the right hand side of B.
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Fig. 9 The partition of the domain of dependence 73 of point t5 in a meridian (o plane for

an accelerating, decelerating and accelerating supersonic speed starting from rest at

r = 0. The subsonic and supersonic intervals are [0, 1) and (1,5] with the deceleration

in (1.7, 3.05). The critical curve ,f has a local maximum at point/t'l, a minimum at

/_'2 and then a maximum at _.'3. The curve j partitions 73 into 17"+. 17"- is partitioned

by the circular arc d_- starting from point/_'2 into two subdomains _- and _-, and

12+ by arcs C+ from point/_'1 and d + from point/-t'3 into three domains 17"+, 17"+ and
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1

P

Fig. 10 Images of the five nonoverlapping subdomains of 2, shown in Fig. 9. at,' superimposed

onto the _r plane in (10a). Shown in Fig. (10b) is the 5× enlargement of the region

containing the four branches of the critical curve, Ji, i = 1, 2, 3, 4. The numerals in

bold face indicate the multiplicities of the regions bounded by o_, B and/or the (-axis.
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Fig. 11 The partition of the domain of dependence 29 of point P at time t for a supersonic

periodic motion m(r) = 2 - 0.8 cos r for 0 < _- _< t = 7r with M'(T) _> 0.
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Fig. 12 Imagesof the four nonoverlappingsubdomainsof _ shownin Fig. 11are superposed
on to the _a plane in Fig. 12a. Shownin Fig. 12bis the 45× enlargementof the region
containing the two cusps.
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1

o"

3

Fig. 14 Images of the four nonoverlapping subdomains of _ shown in Fig. 13 are superposed

on to the _a plane in Fig. 14a. Shown in Fig. 14b is the 3 × enlargement of the region
containing two nonintersecting critical curves.
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£r

Fig. 15 The partition of the domain of dependence73of point/5 at time t with two supersonic

intervals, M(r) = M0 - br + r2/2 for 0 < 7" < t, with M0 and t the same as in Fig. 13
but b = 0.8.
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0

4
t

Fig. 16 Images of the four nonoverlapping subdomains of _ shown in Fig. 15 are superposed

on to the _cr plane in Fig. 16a. Shown in Fig. 16b is the 3x enlargement of the region

containing two intersecting critical curves.
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2

Fig. 17 The partition of the domain of dependence 73 of point/3 at time t with three supersonic

intervals, M(_) = 0.75- 0.5cos(_) for o _<T _<t = _.
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0

I

Fig. 18 Images of the seven nonoverlapping subdomains of _ shown in Fig. 17 are superposed

on to the _G plane in Fig. 18a. Shown in Fig. 18b is the 2x enlargement of the region

containing two nonintersecting critical curves.
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Fig. 19 Propagation of signals from point S initiated at different retarded times to the obser-
vation point P at time t, as explained in Appendix A.
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